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Abstract A linearly separable Bwlem function is leamed by adiluted perceptran with optimal 
stability. A different level of dilution is Plowed for teacher and student perceptran. The learning 
algorithms used were the optimal annealed dilution and Hebbian dilution. The generalization 
ability, i.e. the probability to recognize a panem which has not been leamed before, is calculated 
in replica symmetry. 

1. Introduction 

Neural networks are capable of learning how to recognize or classify patterns from given 
examples. They are adapting their synaptic couplings to the given problem by learning 
algorithms. This has been studied in detail using methods of statistical mechanics 11, 2.41 
or simulations [3]. 

Recently diluted neural architectures have received gowning interest. Dilution gives 
rise to networks with fewer connections, which can be more efficient in solving tasks and 
which can be more easily implemented in parallel or in hardware [4, 5, 11, 12, 14, 16, 231. 
Particularly, diluted perceptrons could possibly use their high generalization ability for 
feature extracting tasks, where not all dimensions of the incoming input patterns are of 
significance. Thus, a perceptron learning from examples being forced to maintain a certain 
dilution level is able to find out what parts of the input signal are unimportant by setting 
the respective weights to zero. 

In this work we will study the generalization ability for the case, where a linearly 
separable Boolean function-given by a teacher perceptron-is learned by an optimal 
student perceptron with annealed dilution. Annealed dilution is a cutting algorithm which is 
learning a pattern set with both optimal stability and optimal dilution, i.e. optimal choice of 
the bonds. Since annealed dilution does not involve a practical algorithm, Hebbian dilution 
[Il,  121 is also investigated. Hebbian dilution is an efficient approximation to annealed 
dilution. 

Generalization problems have been analysed for various non-diluted systems previously 
(see e.g. [a, 10, 22, 241). 

2. The model 

In our case we have a teaching percepwon defined by a normalized vector B which gives 
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the output 

P Kuhl” and K-R Miller 

for all inputs s E The teacher 

B = (1, .. . , 1 ,0 , .  . . , 0)T 

has N ( l  - ft) bits erased and is therefore projected onto a subspace of RN. The output 
function so is taught to a diluted student perceptron, which adapts its synaptic weights 
J E RN according to the set of examples it is given by the teacher perceptron. Note that 
neither the degree of teacher dilution f c  nor the actual teacher distribution are known to the 
student. 

The input set {tr} is chosen at random with Gaussian distributed patterns or t/ = i l  
and i = 1, .  . . , N ,  p = 1,. .. , p .  The outputs { E [ ]  are generated by the teacher following 
(1). The student perceptron is an optimal perceptron starting in the full synaptic space 
searching for the teacher representation in its learning process. This is either done by 
cutting the ‘unimportant’ weights, so that both the stability and the degree of connectivity 
are optimized until the smaller space of dimension N f s  is reached. Or Hebbian dilution 
[ l l ,  121 is used, where we first calculate the Hebbian weights and then dilute all couplings 
with modulus below a certain threshold w.  Note that the problem is unlearnable for S, < ft. 

Learning and cutting are in a sense dual operations which yield an adjustment of the 
student to the example set given by the teacher on the reduced set of connections 

N 

SA =sign C c j ~ , s j  (1)‘ 
( j = ,  1 

where Jj = cjT, with cj E {O, 11, T ERN and 

The student is conspained to a Gardner sphere 191 

We are interested in the question of how good the diluted student, who is trying to 
locate the teacher’s missing dimensions, will generalize. The generalization ability G(a) is 
defined as the probability that a randomly chosen state s, which was not previously leanied, 
is reproduced correctly, i.e. that the student gives the same answer as the teacher. C(a) is 
given [6] by a single parameter R defined as the cosine between teacher and student 

(5) 
1 

G(a) = 1 - -COS-’ R . 
z 

In order to obtain the relevant model parameters analytically we perform the space of 
interaction calculation. For this we follow the lines of Bouten et al [SI, Opper et al [6] and 
Kuhlmann et al [121, where we integrate over all T, and include the cj either optimally or 
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in a quenched manner. The volume is constrained by (2) and (3). The integration over the 
diluted couplings r j  with cj = 0 is done by using the factor 

similarly to Bouten et al [5].  A further constraint for the Gardner calculation is given by 
the inpnt-output correlation of (l), i.e. the outputs 

c ’ - - sign( B~c;)  
j 

(7) 

are given by the teacher. 

3. The calculation 

3.1. Annealed dilrrtion 

The learning rule is the optimal perceptron algorithm, where the perceptron J j  is finding its 
maximal stability 

subject to the constraints (2) and (3). So the perceptron Jj with maximal K defines a unique 
hyperplane for a given set of random patterns. 

We now consider the Gardner volume V subject to all constraints 

where N is the normalization. For V -+ 0 the stability K reaches its maximal value. 
Like Gardner [9] we want to calculate (In V ) ,  where the angle brackets denote an 

averaging over the input patterns [&!‘). For this we consider the replicated partition function 
V“ and introduce suitable auxiliary variables. Subsequently, as usual, the average over the 
patterns [$‘} and an integration over auxiliary variables is performed. We define the order 
parameters 

and 

For a replica symmetric ansatz we now introduce conjugated parameters and integrate 
over the couplings, i.e. we sum over all’possible cy and integrate over y. After taking 
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the replica limit n + 0 we are left with three functions Gi for which we have to solve the 
saddle-point equations 

P Kuhlmann and K-R Muller 

3 

(s) = N-’ (In V )  = saddle, Gi . (12) 
( = I  

The expression saddle, means that the saddle point of the entropy s has to be taken 
with respect to the set of variables T = (q, R,  @, G, E ,  F] .  The functions Gj are given by 

G2 = ft Dz In(1 + E) + (1 - fi) (14) s 
G3=?(Fq+GR f s  

The function O ( x )  = Dt is defined as usual and the Gaussian measure Dt is given 
by Dt = l/J2;?exp(-1/2 t2) .  So the saddle-point equations with G = E;=, Gj read, for 
instance, 

The first term in (18) 

gives exactly the fraction of student weights coinciding with the non-zero teacher 
connections. With the help of the saddle-point equations we can derive an algebraic identity 

E + F q + - R G  - = 1  (20) 

similarly to the one found by Bouten eta1 [SI, i.e. in the limit G + 0 we find exactly the 
same identity as in [5]. The asymptotic expressions of the saddle-point equations in the 
limit q -+ 1 are considered in the appendix and we finally arrive at three coupled nonlinear 
equations at the saddle points, which have to be solved numerically: 

2 l f i  

fs = ft (1 - Lr ~ z )  + (1 - - e ~ v )  (21) 

A3 =AI - RA2 (22) 
and 

22 

RA1 = A2 [ 1 - lr Dz] + [ E e x p  (-z2/2) ] . 
I! 
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The parameters z l p .  tj and dl - d, are discussed in appendix A. Equations (22) and 
(23) differ from the results by Opper et a1 and Bouten et  al by an additional noise term U 
in dz, d3, the order parameter R responsible for the generalization part and the parameters 
q, ft and fs ,  which take w e  of the amount of dilution. Finally, after simplification of the 
double integrals the three equations are solved numerically using the Gaul3-Kronrod method 
for numerical integration and the Powells hybrid method for root finding. The generalization 
is in ow case a function in the three-dimensional parameter space of the teacher respectively 
student dilution ft. fs and a the number of examples presented, i.e. G(5, f, a). 

3.2. Hebbian dilution 

In Hebbian dilution a quenched dilution procedure takes place 1121. To determine the bonds 
to be removed the N Hebb-couplings 

are calculated, where the outputs 6: are given by the diluted teacher (7). Then all the bonds 
j with absolute values I Hj I lower than a threshold value w are removed. On the remaining 
N f s  bonds the perceptron of optimal stability is learned. So the learning proceeds after the 

(25) 
have been determined. Hence the cj are quenched variables. To obtain the threshold w as 
a function of the student dilution parameter f, we consider (2) and obtain 

cj = 0 (IHj I - w) j = 1, . . . , N 

By the law of large numbers, fs is self-averaging in the limit N + cq 

N-LV fs = #$m(fs)lt;J . 

B = (1, .. . , 1,0,. . . ,O)T 

(27) 

For a teacher vector 

where without loss of generality N ( l  - ft) couplings have been set to zero, we have to 
insert 

in (27) and (24), respectively. Using the saddle-point method we obtain 

fJ = feb +2(1 -  ft) @ ( - W )  (29) 
where 

f* = 5(0( - W + E) + 4( - w - E)) 
denotes the contribution to fJ where the bonds have non-vanishing teacher connectionst. 

t We have also calculated fEh for different tencher distributions, e.g. Gaussian distribution with mean 80 and 
standard deviation J1-.0", where we note a slower ascent in &h than for EQ = 1, but qualitatively the same 
behaviour for all Eo. 
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As we know how to choose the threshold w for the Hebb couplings in order to obtain 
we can now formulate the phase space volume V for the perceptron learning 

We relabel all non-zero bonds j ( j  = 1, . . . , N )  by the index k (k  = 1, . . . , Nf& The 

a dilution 
rule on the remaining bonds. 

patterns :/ on the remaining bonds are denoted by 6';. We consider 

where cj from (25) denotes again whether a site j is removed and N normalizes the 
integration over the Gardner sphere. Analogous to section 3.1 we proceed using the replica 
method [15]. During the calculation the order parameters 

and 

are introduced, where Hi is the integration variable in the identity 

f (H.) J - -7 dHj'f(Hj')G(H,! - Hj). 
-m 

Qp,  denotes the overlap between two different solutions of the perceptron problem and R, 
is the cosine between teacher and student as in (5). We further assume replica symmetry, 
e.g. Qpo = q and R, = R and take the limit n + 0. This results in the entropy 

fs fs - - 1 . .  
(s) = N-'(ln V) = saddle, ~- - + R R + h h - - h 2 ( 1 - q ) +  

2(1 - q )  2ff 

Here the saddle point has to be taken with respect to the set of variables 5 = [q. h,  f i ,  R ,  k ) .  
The quantities 11-14 are given in appendix B. 

Finally, we note that the student perceptron reaches its maximum stability K in the limit 
q + 1. The value of K is obtained from the saddle-point equation with respect to q. The 
detailed saddle-point equations are given in the appendix. 
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4. Results and discussion 

4.1. Annealed dilution 

In figures 1-3 we show two surfaces in the four-dimensional parameter space of the annealed 
problem. First we keep ft constant and study G( fs, a)j, and second we fix a = p / N  to 
investigate G(f t ,  

. .  

alpha Figum 1. Genemlimion surface C(&. (I) for 
.f, = 0.2. The changing of C,, CM also be 
seen in the wntour lines of the plots. ‘ 1  

In figures 1 and 2 we see that the generalization ability is an increasing function in 
the number of presented examples CY, as usual. An important observation is that G(f,, a) 
reaches maxima G,, in fs depending on the amount of teacher dilution ft and a. The 
maxima in G are converging towards ft for large a. This means that a student  with the 
same number of connections can asymptotically generalize best. This principal behaviour 
is observed e.g. in figure 1, where the maximum is taken first for fs - 0.4 at small values 
of a and for a > 2.5 the quantity C,, tends towards ft = fs = 0.2. Comparing figure 1 
and 2 we note, that the larger ft the larger we have to choose a, in order to get Gmsx for 
fs = ft. For few learning examples a student with fi > ft is superior to a student with 
fs = ft. For a higher a we observe strong ‘overfitting’ effects for this student (L’ > ft) 
yielding G(f,,. a) < G,, (cf figure 1 and 2). The term ‘overfitting’ is used in analogy 
to function approximation problems. We now take a closer look at the overfitting effects 
occurring. Considering figure 4 where the student dilution is kept fixed at fs = 0.7 and the 
teacher dilution is ft = 0.2, 0.7, we find for a 7 5.7 

G(ft  = 0.7, fs = 0.7) > C(ft  = 0.2, fs = 0.7) 

which could be interpreted as the crossover point, where overfitting occurs for G(ft  = 
0.2, fs = 0.7). It is clear that the more degrees of freedom the system has, the more 
probable is an overfitting effect due to the useless dimensions. Nevertheless, overfitting is 
dependent on a, i.e. for a small number of training examples the strongly diluted teacher 
(ft = 0.2) is approximated better by a student with fs = 0.7, than a teacher with ft = 0.7 
(cf figures 1, 2 and 4). 

As mentioned above, the quantity fc from (19) describes how well the student has 
found the relevant, non-vanishing sites in the teacher couplings. For f, = fI the student 
has identified the positions of the non-zero teacher couplings. Obviously the student with 
(fr = 0.2, fs = 0.7) guessed the relevant teacher connections correctly after few examples 
per neuron (a: > 1.5) yielding fc = ft = 0.2 (cf curve ‘ft = 0.2; f: in figure 4). For 
(ft = 0.7, fs = 0.7) the student needs up to a - 5.7 examples per neuron to find the 
non-trivial teacher weights (cf curve ‘ft = 0.7, fc’ in figure 4). 
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0 1 f s , a l D k . 1  

0 . 9 5  

0.65 
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0 . 9  

0.75 

0 . 6 5  

Figure 2. Generalization surface C(&. a) for 
= 0.7. 

Figure 3. Generalization surface G(&, fJ for a = 3.5, a is denoted by a in the diagamm 

Figure 4. Generalization ability CY, = 
0.7. h) for different values of U with ft = 

f L d . 7  - 
LL-O.7 cc 

fi.0.2 .-- 
ri=o.a fc ....- 

o,2 ,,,,,_.___.__._......._./.: .................................. ~:~ .___.......___. 0.2 . ,0 .7  +om bottom to top. fc i s the  
fnction of couplings for which botb teach& 

0.1 1 ; 1o and student have non-vanishing components 

, , ,  , , , . . . , , , ,  , , , , . ,  . , , , , , . , . . . . . . , , . ,  , , ,  

, , , ,”, ,. , ,  ,,,, ., .. , ~~ 

amha (cf text). 

For a > 5.7 the student-teacher combination (ft = fs = 0.7) generalizes better-as 
expected-since the student with (ft = 0.2, fs = 0.7) has too many degrees of freedom. 
Asymptotically, the student with (ft = 0.2, fs = 0.7) will be able to reach the generalization 
of (ft = fs = 0.7), because the algorithm allows one to choose weights at vanishing teacher 
couplings to be small and asymtotically to be 0. 

Comparing a diluted student .TA to a non-diluted student .IB with f,” = 1 in the range 
of higher CY, we observe that dilution gives a significant improvement AG in generalization 
ability. This is illustrated for (Y = 4, where we find 

AG(ft = 0.7, fs = 0.8, LE = 1.0) N 0.004 
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Figure 5. fc, the fraction of couplings for 
which both teacher and student have non- 
vanishing components for f, = 0.2 and 
different values of f.. Note the discontinuitv _ "  

Q: D:i 1:1 1:1 1:1 4 : 5  ' near ct = 2.034 in the case o f f s  = 0.2 (for 
alpha discussion see text). 

AG(ft=0.2,  Jq=0.2, f:=1.0)-0.074. 

Comparing figures 1 and 2 we see that G ( f s  = 1,  a) is independent of ft. So, if the 
student has all his degrees of freedom fs = 1, a dilution rate ft of the teacher is of no 
importance. The generalization rate then coincides with the results given by Opper et al [61: 
This is to be expected since the calculation in [6] holds for arbitrary teachers Bj for f = 1, 
i.e. also for teachers containing N ( l  - ft) zeros. 

We can see in figures 1 and 2 that G,,(ft = 0.2) > Gm($ = 0.7). This behaviour is 
similar to the one found for the Hebb rule at fs = 1, where the generalization ability of the 
'easy' case B = (1,0, . . . , O)T is higher than the generalization ability of the 'hard' case 
B = 1. 

Now we consider the second surface G ( f t ,  fs),, where a is kept constant. From figure 3 
we note a strong ridge along the diagonal of the plot for a = 3.5, telling us that the highest 
generalization rates are indeed found for fs = ft. Furthermore, the smaller ft,.the stronger is 
the benefit taken from a diluted student and the clearer is the maximum of the generalization 
surface. 

This behaviour is to he expected for diluted perceptrons, since the fine-tuning of the 
student hyperplane is of course dependent on the fact that the student has found the correct 
non-zero teacher sites and this process takes a different number of pattems presented for 
different levels of dilution as we conclude from figure 5 .  In figure 5 we also observe 
a discontinuity in fc in the case fs = ft = 0.2. The reason for this effect is that in our 
calculation a new solution occurs which has a higher stability K and a higher overlap R than 
the old one. This discontinuity is always present at values of & 2 ft in the vicinity of ft. 
For fs - ft and increasing a the student eventually accepts the teacher's couplings, because 
there are no alternative sites left to maximize the stability instead of the generalization rate. 

= 0.3 
or fs = 0.4 we find K c 0 beyond 

In figure 6, K is plotted as a function of a. For the parameters ft = 0.5 and 

au(ft = 0.5, fs = 0.3) +. 2.8 a,(ft = 0.5, .fs = 0.4) - 4.2. 

As discussed above, here we also encouter the problem of unlearnability [lo] if fs < ft. 
In figure 6 we find positive stabilities for few examples even if the problem is unlearnable, 
obviously the student can embed the patterns conectly up to a certain number of training 
examples, although with low generalization ability. From a certain finite value ay > 0 on 
we find negative stabilities ( K  c 0). The higher the difference between fs and f, the more 
negative is the respective stability. 

For CY < CY,(&, ft) the student network is able to give a rough first approximation of the 
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Fwre 6. Stability K as a function of a for 
unleamable configurations & = 0.5, h = 
0.3, 0.4 and learnable configurations f, = 
0.5, fs = 0.5. 0.6. 

__ .... - - 

FS-0.2. ann. 
Fs.O.6. 0"". 
Fs-0.2. Webb 
FS-0.6, Habb 

a 
0 

Figure 7. (a) Comparison of the stabiliiy curves ~ ( a )  for Hebbian dilution (Hebb) and mealed 
(ann.) dilution, for & = 0.1 and = 0.2, 0.6. (b) Genenljntion curves G(n) for the same 
parameter set. 

teacher-still with positive stabilities-although it could never reach perfect generalization 
for fs c fi, since the degrees of freedom are not sufficient. For more examples, i.e. a > a,, 
the student network is not able to meet the constraints imposed by the example set and 
the patterns are embedded with negative stabilities. The same diagram 6 also shows the 
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The & = 0.5 line gives the highest 

K 

Illin 0.20 

0.15 

0 i o  

0.05 11 1 i1L-L- Figure S. Stability curves ~ ( a )  for 
ibian dilution. The parameters are 

“dues of Y while fir = 0.05 the 
problem is unleamable and Y stays 
negative. Note that for the leamable 
problem of & = 0.11 and fs = 0.15 
we also find a range, with K c 0 

jiiv \ -0.05 

-0.10, , , , , , , , , , , , , , , , , , , , 
0 1 2 3 $ 5 6 7 8 9 1 0  

a 

learnable combination fr  = 0.5 and Jq = 0.5 resp fs = 0.6. 

4.2. Hebbian dilution 

We now compare the results found above with the results for a perceptron that has been 
trained by the Hebbian dilution algorithm. As expected, it can be seen from figure 7(u) that 
the stability is lower than in the optimal case, of course a higher value of fs always yields 
a higher stability K .  Nevertheless the generalization rate can be higher in the Hebbian 
case. In figure 7(b) we observe that for higher a the Hebbian dilution algorithm yields 
higher generalization rates than the optimal algorithm. The reason for this are two effects: 
‘overfitting’ and optimization of stability. Note, that both values fs = 0.2, 0.6 in figure 7(b) 
give rise to strong ‘overfitting’ effects for fr = 0.1. For fs = 0.6 we find an intersection of 
the generalization curves at cui - 0.5 with a higher generalization rate for annealed dilution 
below cui and higher generalization rate for Hebbian dilution above cui. The same effect 
occurs for fs = 0.2 at a higher value of cui. For fs + ft we expect ai + 03, i.e. a 
generalization rate for annealed dilution above Hebbian dilution. In figure 11 we observe 
that the maximum generalization rate of annealed dilution is higher than in the Hebbian 
case, as expected. Moreover, the ‘overfitting’ effects are seen to become stronger with 
growing a, for cu = 6 we note an intersection of both generalization curves similar as in 
figure 7(b). We can conclude Hebbian dilution is less sensitive to ‘overfitting’ effects than 
annealed dilution. 

The annealed dilution algorithm chooses its sites in order to maximize the stability, 
but it loses track of the problem to generalize optimally. Contrarily, the Hebbian dilution 
algorithm does concentrate on the task of generalization, but it yields low stabilities for 
small values of a. 

is greater than, 
but close to fr. The reason for this behaviour is that the student has not yet determined 
the teacher’s relevant sites. For higher a the stability K increases again, reaches a positive 
maximum and decreases to zero for a -+ 03. For higher values of fs the stability will stay 
positive for all a. In a~medium range of fs the stability K can still have a local minimum 
with respect to a. 

If we consider the stability parameter K ,  we find that K is a monotonously increasing 
function in fs reaching a maximum for fs = 1. As also known from undiluted models 
stabilities are high for a few examples and decrease monotonously for increasing a. 

From figure 8 it can be seen that negative stabilities can even occur, if 
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a 

Figure 9. The fnction of student sites 
fcj, coinciding with the non-vanishing 
tencher sites for Hebbian dilution as 
discussed in the text (fi = 0.2). 

So during the learning procedure there are two competing effects. On one side the 
perceptron tries to learn an increasing number of patterns, and on the other side it chooses 
the sites on which the teacher is expected to be active. Hence it is conceivable that there is 
a medium range of (Y in which the choice of the active sites is most important. 

For the unlearnable problem fq < ft negative stabilities occur, if a! increases. As in the 
optimal case, the student can embed a few patterns correctly, whereas from a value or, on 
we find K < 0. 

Figure 9 shows that fch from (30) increases with a!. In the limit a! -+ 00 the active sites 
will be determined eventually if f$ > ft. By an expansion for high a! in (29) we obtain 
f b  -+ ft for CY -+ a3 in this case. If fs < fi the teacher cannot be learned for higher a!. 
Nevertheless the student only acts on the teacher’s active sites, i.e. fch + fs for a! + CO. 

If we examine the dependence of the generalization rate on the student dilution fs we 
observe an ‘overfitting’ effect as in the annealed dilution case (see figures 10 and 11). We 
also note that the maximum of the generalization rate with respect to the student dilution 
fs converges to fr as a increases. As described above the student gets more and more 
information about the teacher’s relevant sites as 01 increases. If the student’s objective 
is a high generalization ability he will have to operate at a low value of f,. But for a 
practical algorithm like the Hebbian dilution method positive stabilities K must be reached. 
Consequently, in order to obtain a positive K the student is always required to work on the 
right-hand side of the dotted K = 0 curve in figure 10. 

5. Conclusions 

We have shown how well a student perceptron generalizes, which is forced to a certain 
degree of dilution fs. It was demonstrated that a diluted student can yield a strong 
improvement of generalization as compared with the nondiluted student, if the teacher 
is also diluted to a degree fr. 

The theoretical annealed dilution algorithm and the practical Hebbian dilution algorithm 
appeared to behave similarly with respect to overfitting. To make use of the higher 
generalization ability at high values of a!, one has to choose the student dilution fs at 
the lowest possible value that still guarantees a positive stability K .  Thus the overfitting 
effect will be avoided. 

It can be seen that the smaller fr the easier the teacher hyperplane can be approximated 
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FS 

F i p  10. Comparison of generalization curves C(f , )  for fi = 0.2 and different values of (1. 
The value 01 = 20 gives the highest generalization ability. The broken curve shows $e transition 
line of x = 0, on the left of this line we find K c 0 and on the right x > 0. 

0.85 

0.80 __.- _- C 0.75 

0.60 -.. (I - 6. Hsbb -- 0 - z. Hcbb 
0.55 - a i/ 6. MLI. - - 2. M". 
0.50 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FS 

Figure 11. Comparison of general- 
ization curves G(fJ for fi = 0.3 
and u = 2, 6 for Hebbian dilution 
and annealed dilution. We observe 
strong,'ovefining' effects foru = 6 
(upper WO CUN~S) ,  where the He& 
b h  dilution curve is intersecting 
with the annealed dilu-e. 

by a given degree fs of the student dilution. The quantity fc demonstrates how fast the 
student learns the relevant teacher connections, i.e. how fast he knows the relevant subspace 
spanned by the teacher vector B. A well performing annealed dilution algorithm would 
make this result interesting for applications, because for higher values of M a diluted system 
works more efficiently than a fully connected system. 

In our analytical calculation of the generalization rate in the annealed case we made 
the replica symmetric approximation, since we were only interested in the qualitative 
behaviour of this algorithm. Nevertheless the discontinuity in fc in figure 5 deserves further 
investigation in the context of a replica-symmetry breaking calculation of first order. 

The Hebbian dilution algorithm is a good approximation-although not optimaldo 
annealed dilution. The results show that this practical algorithm has qualitatively the same 
behaviour as the optimal algorithm, and is even less sensitive to overfitting as we observed 
in figure 7(b) .  For the Hebbian dilution we do not have replica-symmetry b d n g  effects 
for positive stabilities, because the cj are quenched and therefore the Hebbian case is similar 
to the standard perceptron problem, i.e. the phase space is simply connected and only one- 
replica symmetric-solution exists [ 171. While replica symmetry breaking is known to occur 
in the annealed dilution case for all stabilities K [12], it should only occur for unlearnable 
problems, i.e. negative K ,  for quenched dilution algorithms [17]. 

Nevertheless the qualitative behaviour of the learning error (see [6, 171) of the diluted 
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perceptron may be of importance for the construction of new learning and generalization 
strategies. However, in the context of generalization, one could conceive an approach 
similar to [23], where the learning error has been studied for several models of diluted 
networks. In particular, the learning error could be used for comparison of two dilution 
algorithms that have nearly the same generalization rates and the same stabilities. 

In summary, we conclude that it is worthwhile using systematically diluted networks in 
order to obtain an increased generalization behaviour. Therefore a diluted perceptron could 
be used practically as a basic element for feature extraction, since it can learn to detect 
wildcards, i.e. unimportant channels in input signals. 

Another possible learning algorithm to be analysed would be: perceptron learning, 
removal of all weights below a threshold w and perceptron learning on the remaining 
couplings 111, 12, 161. We would expect the same qualitative behaviour for this algorithm. 
Furthermore, it would be interesting to investigate multilayer diluted perceptrons arranged 
as a commitee or parity machine 118-211, here we would also expect a gain in efficiency. 

P Kuhimann and K-R Muller 
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Appendix A. Annealed dilution 

If we consider the asymptotic expressions of the saddle-point equations (12) in the limit 
q + 1, we find for E + F  

the same (1 - q)-I behaviour which also holds for G from a,& = 0. 

(-42) 
~ 2 = i i m - 4 ~ ~ ( i - q ) = c r a ~ S ~ u ~ z  ( K - ~ ( I - R ~ ) I / ~ - R I ~ I )  7. 

q+l D 

whereas F from aqG = 0 shows a (1 - q)-' asymptotic behaviour: 

A ~ = l i m f , F ( l - q ) ~ = o r  D ~ D Z ( K - Z ( I - R ~ ) ~ ' ~ - R I U ~ ) ~ .  (A3) 

The integration in (A2) and (A31 has to be done over the two-dimensional domain 'D 
defined by 2, -- ( K  - z ( l  - R)'/'- Rlul =- 01. Using (20) we derive the asymptotic identity 

9-1 s, 

lim fsF(l - 4)' = lim fJ - q)  . q-1 q+ 1 
(-44) 

On our way to (21x23)  we had to evaluate expressions containing E and s2, e.g. 

lr Dz . E 1 Dzl+g = 1 - 
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This is done by considering the asymptotic properties of (G - 2 f i z ) z / ( S ( E  + F)) and 
e - * P / ( m )  discussed in (AI)-(A3). For q + 1 the quantity E either goes to CO or 
0, so the integral (AS) only contributes for 8-l + 0. Using the abreviations 

and qz = u fa, we get 

Since we know that a + CO holds for q + 1, the polynomial in z in the exponent 
of (A6) has to be positive in order to yield E-' -P 0. This condition is fulfilled in both 
intervals [a, CO] and [-CO, z l ] .  The roots of the polynomial in (A6) are given as 

G 
2112 = Thtl f - 

2 f i '  

Appendix B. Hebbian dilution 

We first define the quantities 11-14 used for the entropy in (34): 

rl = w w l )  + a(-Wz) 

and 

w 2 = w - g  

To obtain the detailed saddle-point equations, we first define auxiliary variables 
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6 = (1 - q)1; = c.?+ D .  (B 10) 

W1) 

We introduce the abbreviation for integrals over poIynomials and Gauss functions 

Z(s, U, U, w )  = Dz(uz2 + uz + W )  , s,m 
Now the saddle-point equations in the limit q + 1 read 

m 

-6 = 2ai Du Z(t ,  0,1, t )  

where t = (IC - h - u R ) / m  is a function of the integration variable U. For a given 
a the three saddle-point equations are solved for K ,  h and R. 
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